4.5 Article

Additional Supra-Self-Assembly of Human Serum Albumin under Amyloid-Like-Forming Solution Conditions

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 36, Pages 12391-12399

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp904167e

Keywords

-

Funding

  1. Ministerio de Educacion y Ciencia [MAT-2007-61604]
  2. Xunta de Galicia

Ask authors/readers for more resources

Protein aggregation has a multitude of consequences ranging from affecting protein expression to its implication in different diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. These fibrils can further associate in other more complex structures such as fibrillar gels, plaques, or spherulitic structures. In the present work, we describe the physical and structural properties of additional supraself-assembled structures of human serum albumin under solution conditions in which amyloid-like fibrils are formed. We have detected the formation of ordered aggregates of amyloid fibrils, i.e., spherulites which possess a radial arrangement of the fibrils around a disorganized protein core and sizes of several micrometers by means of polarized optical microscopy, laser confocal microscopy, and transmission electron microscopy. These spherulites are detected both in solution and embedded in an isotropic matrix of fibrillar gels. In this regard, we have also noted the formation of protein gels when the protein concentration and/or ionic strength exceds a threshold value (the gelation point) as observed by rheometry. Fibrillar gels are formed through intermolecular nonspecific association of amyloid fibrils at a pH far away from the isolectric point of the protein where protein molecules seem to display a, solid-like behavior due to the existence of non-DLVO (Derjaguin-Landau-Verwey-Overbeck) intermolecular repulsive forces. As the solution ionic strength increases, a coarsening of this type of gel is observed by environmental scanning microscopy. in contrast, at pH close to the protein isoelectric point, particulate gels are formed due to a faster aggregation process, which does not allow substantial structural reorganization to enable the formation of ordered structures. This behavior also additionally corroborates that the existence of particulates might also be a generic property of all polypeptide chains as amyloid fibril fort-nation under suitable conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available