4.5 Article

Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 46, Pages 15409-15418

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp907379d

Keywords

-

Funding

  1. Solar Energy Utilization Program
  2. Office of Basic Energy Sciences
  3. U.S. Department of Energy [DE-FG02-0ER06-15]

Ask authors/readers for more resources

Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or smart matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups oil the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available