4.5 Article

Tunable thermoassociation of binary guanosine gels

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 4, Pages 1130-1134

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp709613p

Keywords

-

Ask authors/readers for more resources

It is well-known that aqueous solutions of individual guanosine compounds can form gels through reversible self-assembly. Typically, gelation is favored at low temperature and acidic pH. We have discovered that binary mixtures of 5'-guanosine monophosphate (GMP) and guanosine (Guo) can form stable gels at neutral pH over a temperature range that can be tuned by varying the relative proportions of the hydrophobic Guo and the hydrophilic GMP in the mixture. Gelation was studied over the temperature range of 5-40 degrees C or 60 degrees C at pH 7.2 using visual detection, circular dichroism (CD) spectroscopy, and CD thermal melt experiments. Solutions with high GMP/Guo ratios behaved similar to solutions of GMP alone while solutions with low GMP/Guo formed firm gels across the entire temperature range. Most interesting were solutions between these two extremes, which were found to exhibit thermoassociative behavior; these solutions are liquid at refrigerator temperature and undergo sharp transitions to a gel only at higher temperatures. Increasing the GMP/Guo ratio and increasing the total concentration of guanosine compounds shifted the onset of gelation to higher temperatures (ranging from 20 to 40 degrees C), narrowed the temperature range of the gel phase, and sharpened the reversible phase transitions. The combination of self-assembly, reversibility, and tunability over biologically relevant temperature ranges and pH offers exciting possibilities for these simple and inexpensive materials in medical, biological, analytical, and nanotechnological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available