4.5 Article

Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 7, Pages 2045-2055

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp077223x

Keywords

-

Ask authors/readers for more resources

The solubility of water and carbon dioxide in the ionic liquid 1-n-hexyl-3-methylimidazolium bis- (trifluoromethylsulfonyl)imide ([hmim][Tf2N]) is computed using atomistic Monte Carlo simulations. A newly developed biasing algorithm is used to enable complete isotherms to be computed. In addition, a recently developed pairwise damped electrostatic potential calculation procedure is used to speed the calculations. The computed isotherms, Henry's Law constants, and partial molar enthalpies of absorption are all in quantitative agreement with available experimental data. The simulations predict that the excess molar volume of CO2/ionic liquid mixtures is large and negative. Analysis of ionic liquid conformations shows that the CO2 does not perturb the underlying liquid structure until very high CO2 concentrations are reached. At the highest CO2 concentrations, the alkyl chain on the cation stretches out slightly, and the distance between cation and anion centers of mass increases by about 1 angstrom. Water/ionic liquid mixtures have excess molar volumes that are also negative but much smaller in magnitude than those for the case of CO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available