4.5 Article

Quantum Chemical Calculations of the Redox Potential of the Pu(VII)/Pu(VIII) Couple

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 41, Pages 13059-13063

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp804856z

Keywords

-

Funding

  1. Alexander von Humboldt Foundation, Germany

Ask authors/readers for more resources

The redox potential of the Pu(VII)/Pu(VIII) couple was studied by density functional theory calculations. The spin-orbit effect was corrected at the CASSCF level. The redox potential (relative to the standard hydrogen potential) of the Pu(VII)/Pu(VIII) couple in alkaline solution was found to vary from 4.36 to 1.06 V depending on the number of Pu-O oxo bonds, coordination numbers, and coordination modes. The redox potential drops substantially as the number of Pu-O oxo bonds increases. Pu(VIII) may be synthesized in strong alkaline solution assuming that both Pu(VII) and Pu(VIII) exist in penta-oxo form, (PuO5OH4-)-O-VII and (PuO5OH3-)-O-VII respectively. The Mulliken population of Pu in Pu(VII) and Pu(VIII) complexes are very similar, suggesting that the spin-orbit effect is rather small in Pu(VII) complexes and that when Pu(VII) is oxidized to Pu(VIII) the electron is stripped mainly from the ligand. Consequently, Pu(VIII) is in an unstable oxidation state and easily reduced back to Pu(VII) by the solvent water molecules. In acidic medium, the Pu(VII)/Pu(VIII) redox potential is too high to get the Pu(VIII) valence state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available