4.5 Article

Computation of surface tensions using expanded ensemble Simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 15, Pages 4674-4679

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp7095983

Keywords

-

Ask authors/readers for more resources

A method for the direct simulation of the surface tension is examined. The technique is based on the thermodynamic route to the interfacial tension and makes use of the expanded ensemble simulation method for the calculation of the free energy difference between two inhomogeneous systems with the same number of particles, temperature, and volume, but different interfacial area. The method is completely general and suitable for systems with either continuous or discontinuous interactions. The adequacy of the expanded ensemble method is assessed by computing the interfacial tension of the planar vapor-liquid interface of Lennard-Jones, Lennard-Jones dimers, Gay-Berne, and square-well model fluids; in the latter, the interactions are discontinuous and the present method does not exhibit the asymmetry of other related methods, such as the test area. The expanded ensemble simulation results are compared with simulation data obtained from other techniques (mechanical and test area) with overall good agreement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available