4.5 Article

Evaluating rotational diffusion from protein MD simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 19, Pages 6013-6024

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0761564

Keywords

-

Ask authors/readers for more resources

It is now feasible to carry out molecular dynamics simulations of proteins in water that are long compared to the overall tumbling of the molecule. Here, we examine rotational diffusion in four small, globular proteins (ubiquitin, binase, lysozyme, and fragment B3 of protein G) with the TIP3P, TIP4P/EW, and SPC/E water models, in simulations that are 6 to 60 times as long as the mean rotational tumbling time. We describe a method for extracting diffusion tensors from such simulations and compare the results to experimental values extracted from NMR relaxation measurements. The simulation results accurately follow a diffusion equation, even for spherical harmonic correlation functions with l as large as 8. However, the best-fit tensors are significantly different from experiment, especially for the commonly used TIP3P water model. Simulations that are 20 to 100 times longer than the rotational tumbling times are needed for good statistics. A number of residues exhibit internal motions on the nanosecond time scale, but in all cases examined here, a product of internal and overall time-correlation functions matches the total time-correlation function well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available