4.5 Article

Stable photochromism and controllable reduction properties of surfactant-encapsulated polyoxometalate/silica hybrid films

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 112, Issue 28, Pages 8257-8263

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp801188e

Keywords

-

Ask authors/readers for more resources

In this paper, we present a novel strategy for fabricating polyoxometalate (POM)-based photochromic silica hybrid films. To combine metal nanoparticles (NPs) into the POMs embedded silica matrix, furthermore, we realized the controllable in situ synthesis of metal NPs in the film by utilizing the reduction property of POMs existing in the reduced state. Through electrostatic encapsulation with hydroxyl-terminated surfactants, the POMs with good redox property can be covalently grafted onto a silica matrix by means of a sol-gel approach, and stable silica sol-gel thin films containing surfactant-encapsulated POMs can be obtained. The functional hybrid film exhibits both the transparent and easily processible properties of silica matrix and the stable and reversible photochromism of POMs. In addition, well-dispersed POMs in a hydrophobic microenvironment within the hybrid film can be used as reductants for the in situ synthesis of metal NPs. More significantly, the size and location of NPs can be tuned by controlling the adsorption time of metal ions and mask blocking the surface. The hybrid film containing both POMs and metal NPs with patterned morphology can be obtained, which has potential applications in optical display, memory, catalysis, microelectronic devices and antibacterial materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available