4.7 Article

Nucleon isovector couplings from Nf=2 lattice QCD

Journal

PHYSICAL REVIEW D
Volume 91, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.054501

Keywords

-

Funding

  1. European Union Initial Training Network [238353]
  2. International Reintegration Grant [256594]

Ask authors/readers for more resources

We compute the axial, scalar, tensor and pseudoscalar isovector couplings of the nucleon as well as the induced tensor and pseudoscalar charges in lattice simulations with N-f = 2 mass-degenerate non-perturbatively improved Wilson-Sheikholeslami-Wohlert fermions. The simulations are carried out down to a pion mass of 150 Me V and linear spatial lattice extents of up to 4.6 fm at three different lattice spacings ranging from approximately 0.08 fm to 0.06 fm. Possible excited state contamination is carefully investigated and finite volume effects are studied. The couplings, determined at these lattice spacings, are extrapolated to the physical pion mass. In this limit we find agreement with experimental results, where these exist, with the exception of the magnetic moment. A proper continuum limit could not be performed, due to our limited range of lattice constants, but no significant lattice spacing dependence is detected. Upper limits on discretization effects are estimated and these dominate the error budget.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available