4.6 Article

CCVJ Is Not a Simple Rotor Probe

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 116, Issue 44, Pages 10786-10792

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp309019g

Keywords

-

Funding

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-09ER16118]
  2. NSF-REU [CHE-1004641]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1004641] Funding Source: National Science Foundation

Ask authors/readers for more resources

The photochemistry of the rotor probe 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ) was studied to elucidate a curious effect of fluid flow previously reported. The apparent sensitivity to fluid motion observed in CCVJ but not in the closely related molecule 9-(dicyanovinyl)julolidine (DCVJ) is found to be an indirect effect of a photo-isomerization reaction. The results presented here demonstrate that it is this isomerization, rather than the commonly assumed TICT process, that confers viscosity-sensing ability on these fluorophores. In micromolar solutions in hydroxylic solvents CCVJ exists primarily in the carboxylate form. Only the E isomer of this anion is initially present in solutions prepared from the solid, but in room light such solutions rapidly achieve a photostationary state in which the E isomer and an essentially nonfluorescent Z isomer exist in comparable concentrations. The Z isomer is metastable in S-0 such that in the absence of light the solution reverts slowly to pure E. Unlike DCVJ where only a single isomer is possible, the production of long-lived photoproducts in CCVJ and other asymmetrically substituted styryenyl probes complicates their fluorescence response. Considerable care is needed when such fluorphores are used as steady-state sensors of environmental fluidity are used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available