4.6 Article

Experimental Determination of the High-Temperature Rate Constant for the Reaction of OH with sec-Butanol

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 116, Issue 39, Pages 9607-9613

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp306977e

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences

Ask authors/readers for more resources

The overall rate constant for the reaction of OH with sec-butanol [CH3CH(OH)CH2CH3] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 X 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of +/- 30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 X 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available