4.6 Article

Structural Identification of a Novel Axially Chiral Binaphthyl Fluorene Based Salen Ligand in Solution Using Electronic Circular Dichroism: A Theoretical Experimental Analysis

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 116, Issue 10, Pages 2453-2465

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp2112507

Keywords

-

Funding

  1. National Science Foundation [CHE-0832622]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0840431] Funding Source: National Science Foundation
  4. Division Of Chemistry
  5. Direct For Mathematical & Physical Scien [0832622] Funding Source: National Science Foundation

Ask authors/readers for more resources

A novel axially chiral binaphthyl fluorene based salen ligand, AFX-155 [2,2'-(1E,1'E)-(R)-1,1'-binaphthyl-2,2'diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(4-((7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-1)ethynyl)phenol)], with potential applications in homogeneous catalysis, biophotonics, and sensing was synthesized. A full comparative theoretical experimental analysis of the UV-vis and electronic circular dichroism (ECD) spectra of the 10 primary isomers, comprising stereoisomers and optical isomers, revealed the presence of the unique structure in tetrahydrofuran (THF) solution, the trans-R-intra//trans-R-extra. A proposed route of attack of the (R)-(+)-2,2'-diamino-1,1'-binapthalene onto a salicaldehyde 5-(2-(2-(diphenylamino)-9,9-dihexyl-9H-fluoren-7-yl)ethynyl)-2-hydroxybenzaldehyde followed by a consecutive attack of the resulting species onto another salicaldehyde, both via Burgi:Dunitz trajectory, validates the unambiguous formation of the established isomer. Steric hindrances seem to be the determinant factor that defines the 3D structural conformation of this particular stereoisomer of AFX-155 with triple axial chirality. The determination of every optimal structure and the dominant conformers of AFX-155 were calculated evaluating, in CONFLEX, their steric energies using force fields at MMFF94S (2006-11-24HGTEMP) level in gas phase. The geometry of the conformers was optimized in THF (using PCM) using Gaussian 09 at the DFT/B3LYP level of theory and 6-31G* basis set. The first 100 electronic excited states were calculated using the same level of theory and basis set.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available