4.6 Article

Infrared Characterization of the HCOOH•••CO2 Complexes in Solid Argon: Stabilization of the Higher-Energy Conformer of Formic Acid

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 116, Issue 22, Pages 5305-5311

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp302911p

Keywords

-

Funding

  1. Academy of Finland through the Finnish Centre of Excellence in Computational Molecular Science
  2. [139105]

Ask authors/readers for more resources

The complexes of formic acid (HCOOH, FA) with carbon dioxide are studied by infrared spectroscopy in an argon matrix. Two trans-FA center dot center dot center dot CO2 and one cis-FA center dot center dot center dot CO2 complexes are experimentally identified while the calculations at the MP2(full)/6-311++G(2d,2p) level of theory predict one more minimum for the cis-FA center dot center dot center dot CO2 complex. The complex of the higher-energy conformer cis-FA with CO2 is prepared by vibrational excitation of the ground-state trans-FA conformer combined with thermal annealing. The lifetime of the cis-FA center dot center dot center dot CO2 complex in an argon matrix at 10 K is 2 orders of magnitude longer than that of the cis-FA monomer. This big difference is explained by the computational results which show a higher stabilization barrier for the complex. The solvation effects in solid argon are theoretically estimated and their contribution to the stabilization barriers of the higher-energy species is discussed. The relative barrier transmissions for hydrogen tunneling in the cis-FA center dot center dot center dot CO2 complex and cis-FA monomer are in good agreement with the experimental decay rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available