4.6 Article

Hydration Shell Structure and Dynamics of Curium(III) in Aqueous Solution: First Principles and Empirical Studies

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 115, Issue 18, Pages 4665-4677

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp201043f

Keywords

-

Funding

  1. U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory
  2. BES Heavy Element Chemistry program
  3. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy

Ask authors/readers for more resources

Results of ab initio molecular dynamics (AIMD), quantum mechanics/molecular mechanics (QM/MM), and classical molecular dynamics (CMD) simulations of Cm3+ in liquid water at a temperature of 300 K are reported. The AIMD simulation was based on the Car-Parrinello MD scheme and GGA-PBE formulation of density functional theory. Two QM/MM simulations were performed by treating Cm3+ and the water molecules in the first shell quantum mechanically using the PBE (QM/MM-PBE) and the hybrid PBE0 density functionals (QM/MM-PBE0). Two CMD simulations were carried out using ab initio derived pair plus three-body potentials (CMD-3B) and empirical Lennard-Jones pair potential (CMD-LJ). The AIMD and QM/MM-PBE simulations predict average first shell hydration numbers of 8, both of which disagree with recent experimental EXAFS and TRLFS value of 9. On the other hand, the average first shell hydration numbers obtained in the QM/MM-PBE0 and CMD simulations was 9, which agrees with experiment. All the simulations predicted an average first shell and second shell Cm-O bond distance of 2.49-2.53 angstrom and 4.67-4.75 angstrom respectively, both of which are in fair agreement with corresponding experimental values of 2.45-2.48 and 4.65 angstrom. The geometric arrangement of the 8-fold and 9-fold coordinated first shell structures corresponded to the square antiprism and tricapped trigonal prisms, respectively. The second shell hydration number for AIMD QM/MM-PBE, QM/MM-PBE0, CMD-3B, and CMD-LJ, were 15.8, 17.2, 17.7, 17.4, and 16.4 respectively, which indicates second hydration shell overcoordination compared to a recent EXAFS experimental value of 13. Save the EXAFS spectra CMD-LJ simulation, all the computed EXAFS spectra agree fairly well with experiment and a clear distinction could not be made between configurations with 8-fold and 9-fold coordinated first shells. The mechanisms responsible for the first shell associative and dissociative ligand exchange in the classical simulations have been analyzed. The first shell mean residence time was predicted to be on the nanosecond time scale. The computed diffusion constants of Cm3+ and water are in good agreement with experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available