4.6 Article

Local-Mode Approach to Modeling Multidimensional Infrared Spectra of Metal Carbonyls

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 115, Issue 21, Pages 5354-5363

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp201641h

Keywords

-

Funding

  1. Rackham Graduate School at the University of Michigan
  2. National Science Foundation [CHE-0911559]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0809506] Funding Source: National Science Foundation
  5. Division Of Chemistry
  6. Direct For Mathematical & Physical Scien [748501] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a general approach for modeling multidimensional infrared spectra based on a combination of phenomenological fitting and ab initio electronic structure calculations. The vibrational Hamiltonian is written in terms of bilinearly coupled Morse oscillators that represent local carbonyl stretches. This should be contrasted with the previous approach, where the anharmonic Hamiltonian was given in terms of normal-mode coordinates (Baiz et al. J. Phys. Chem. A 2009, 113, 9617). The bilinearly coupled Morse oscillator Hamiltonian is parametrized such that the frequencies and couplings are consistent with experiment, and the anharmonicities are computed by density functional theory. The advantages of the local-mode versus normal-mode approaches are discussed, as well as the ability of different density functionals to provide accurate estimates of the model parameters. The applicability and usefulness of the new approach are demonstrated in the context of the recently measured multidimensional infrared spectra of dimanganese decacarbonyl. The shifts in local site frequencies, couplings, and anharmonicities due to hydrogen bonding to the individual carbonyls are explored. It is found that, even though the effect of hydrogen bonding is nonlocal, it is additive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available