4.6 Article

Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 114, Issue 12, Pages 4246-4253

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9111348

Keywords

-

Ask authors/readers for more resources

Photochemical reduction of Hg(II) by various low-molecular-weight organic compounds (LMWOC) was investigated to evaluate the effect of specific functional groups that are typically encountered in natural dissolved organic matters (DOM) on the photoreactivity and isotope fractionation of Hg. LMWOC with reduced sulfur functional groups (e.g., cysteine, glutathione) resulted in slower photochemical reduction of Hg(II) than those without reduced sulfur groups (e.g., serine, oxalic acid). Reduction rate constants were specifically determined for two contrasting LMWOC: DL-serine (0.640 h(-1)) and L-cysteine (0.047 h(-1)). Different mass independent isotope effects of Hg were induced by the two types of LMWOC. S-containing ligands specifically enriched magnetic isotopes (Hg-199 and Hg-201) in the product (Hg(0)) while sulfurless ligands enriched Hg-199 and Hg-201 in the reactant (Hg(II)), suggesting that opposite magnetic isotope effects were produced by different types of ligands. The nuclear field shift effect was also observed in the photochemical reduction by serine. These isotope effects are related to specific functional groups and reduction mechanisms, and may be used to distinguish between primary and secondary photochemical reduction mechanisms of Hg(II) and to explain isotope fractionation during the photochemical reduction of Hg(II) by natural DOM, which provides mixed bonding conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available