4.6 Article

DFT Calculations of Indirect 29Si-1H Spin-Spin Coupling Constants in Organoalkoxysilanes

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 114, Issue 16, Pages 5279-5286

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp911327a

Keywords

-

Funding

  1. NSF [CTS-0348234]

Ask authors/readers for more resources

The performance of four basis sets (6-311+G(2d,p), IGLO-III, cc-PVTZ, and 6-31G) is evaluated in order to find a quantum mechanical technique that can be used to accurately estimate Si-29-H-1 spin-spin coupling constants in organoalkoxysilanes. The 6-31G basis set with the B3LYP functional is found to be an accurate, efficient, and cost-effective density functional theory method for predicting spin spin coupling constants of organoalkoxysilanes. Knowledge of these scalar coupling constants and their dependence on structural variations is important to be able to fine-tune NMR experiments that rely on polarization transfer among nuclei, such as Si-29 distortionless enhancement by polarization transfer (DEPT). The effects of size and the number of unhydrolyzable alkyl groups attached to silicon and the effects of substitution of alkoxy groups with hydroxyl groups on Si-29-H-1 spin spin coupling constants are investigated using this DFT method. The results show that the predicted scalar coupling between silicon and organic groups depends weakly on the degree of hydrolysis of the alkoxysilanes. The effectiveness of this method is also illustrated for the determination of spin spin coupling constants in a species containing a siloxane bond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available