4.6 Article

Using Cyclodextrins to Encapsulate Oxygen-Centered and Carbon-Centered Radical Adducts: The Case of DMPO, PBN, and MNP Spin Traps

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 114, Issue 21, Pages 6217-6225

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp100777u

Keywords

-

Funding

  1. National Science Foundation
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [0964827] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present electron spin resonance (ESR) experiments that describe the interaction of beta-cyclodextrin (beta-CD) with spin adducts of three spin traps: 5,5-dimethyl-1-pyrroline N-oxide (DMPO), N-tert-butyl-alpha-phenylnitrone (PBN), and 2-methyl-2-nitrosopropane (MNP). The focus was on spin adducts of oxygen-centered radicals trapped by DMPO and PBN and on carbon-centered radical adducts trapped by MNP. The radicals were generated by reaction with hydroxyl radicals and the spin adducts studied were DMPO/OH and PBN/OH, MNP/CH2COOH generated in CH3COOH, and MNP/CF2COOH in CF2HCOOH. Di-tert-butyl nitroxide ((CH3)(3)C)(2)NO (DTBN) was also detected in experiments with MNP as the spin trap. A range of interactions of the spin adducts and DTBN with beta-CD was identified. The presence of beta-CD led to significant stabilization of DMPO/OH and PBN/OH but to a negligible effect on the N-14 hyperfine splitting of the adducts, a(N), indicating that the N-O group is outside the beta-CD cavity. An increase of a(N) was detected for DTBN and MNP/CH2COOH in CH3COOH in the presence of beta-CD, a result we assigned to bonding at the rim of the host. Experiments with methylated beta-CD (Me beta-CD) provided support for this conclusion. A different type of complexation was detected for DTBN and MNP/CF2COOH in CF2HCOOH: for specific host concentrations both in and out species were detected. We suggest that the hydrophobicity of the fluorinated adduct leads to insertion of the adduct inside the host cavity. Calculation of the association constant K indicated the competition between DTBN and the adduct for inclusion in the host. For MNP as spin trap, the two nitroxide radicals (adduct and DTBN) have the same type of interaction with the host: at the rim in acetic acid, and inside the host cavity in CF2HCOOH. Experiments with DTBN in the absence of the spin trap and of adducts illuminated the effect of the local polarity and of the pH on the hyperfine splittings and indicated that the presence of acetic acid encourages rim complexation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available