4.6 Article

Kinetics and Mechanism of Carbamate Formation from CO2(aq), Carbonate Species, and Monoethanolamine in Aqueous Solution

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 113, Issue 17, Pages 5022-5029

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp810564z

Keywords

-

Ask authors/readers for more resources

Removal of carbon dioxide from fossil-based power generation is a potentially useful technique for the reduction of greenhouse gas emissions. Reversible interaction with aqueous amine solutions is most promising. In this process, the formation of carbamates is an important reaction of carbon dioxide. In this contribution, a detailed molecular reaction mechanism for the carbamate formation between MEA (monoethanolamine) and dissolved CO2 as well as carbonate species in aqueous solution is presented. There are three parallel, reversible reactions of the free amine with CO2, carbonic acid, and the bicarbonate ion; the relative importance of the three paths is strongly pH dependent. Kinetic and equilibrium measurements are based on H-1 NMR and stopped-flow measurements with rate constants, equilibrium constants, and protonation constants being reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available