4.6 Article

Generalized Indirect Covariance NMR Formalism for Establishment of Multidimensional Spin Correlations

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 113, Issue 46, Pages 12898-12903

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9070168

Keywords

-

Funding

  1. National Institutes of Health [GM 066041]
  2. NSF, State of Florida [DMR 0654118]

Ask authors/readers for more resources

Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations, which provide important information about bond connectivities and molecular structure. However, direct observation of certain kinds of correlations can be very time-consuming due to limitations in sensitivity and resolution. Covariance NMR derives correlations between spins via the calculation of a (symmetric) covariance matrix, from which a matrix-square root produces a spectrum with enhanced resolution. Recently, the covariance concept has been adopted to the reconstruction of nonsymmetric spectra from pairs of 2D spectra that have a frequency dimension in common. Since the Unsymmetric covariance NMR procedure lacks the matrix-square root step, it does not suppress relay effects and thereby may generate false positive signals due to chemical shift degeneracy. A generalized covariance formalism is presented here that embeds unsymmetric covariance processing within the context of the regular covariance transform. It permits the construction of unsymmetric covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with improved spectral properties. This formalism extends the domain of covariance NMR to include the reconstruction of nonsymmetric NMR spectra at resolutions or sensitivities that are superior to the ones achievable by direct measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available