4.6 Article

Monte Carlo Simulations and Atomic Calculations for Auger Processes in Biomedical Nanotheranostics

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 113, Issue 45, Pages 12364-12369

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp905323y

Keywords

-

Funding

  1. Office of Research
  2. College of Mathematical and Physical Sciences
  3. Department of Astronomy at the Ohio State University

Ask authors/readers for more resources

We present numerical Simulations of X-ray emission and absorption in a biological environment for which we have modified the general-purpose computer code Geant4. The underlying mechanism rests on the use of heavy nanoparticles delivered to specific Sites, Such as cancerous tumors, and treated with monoenergetic X-rays at resonant atomic and molecular transitions. X-ray irradiation of high-Z atoms results in Auger decays of photon emission and electron ejections creating multiple electron vacancies. These vacancies may be filled either be radiative decays from higher electronic shells or by excitations from the K-shell at resonant energies by an external X-ray source, as described in in accompanying paper by Pradhan et al. in this volume. Our Monte Carlo models assume normal body material embedded with a layer of gold nanoparticles. The simulation results presented in this paper demonstrate that resonant excitations via K alpha, K beta, etc., transitions result in a considerable enhancement in localized X-ray energy deposition at the layer with gold nanoparticles, compared with nonresonant processes and energies. The present results could be applicable to in vivo therapy and diagnostics (theranostics) of cancerous tumors using high-Z nanoparticles and monochromatic X-ray sources according to the resonant theranostics (RT) methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available