4.6 Article

Different origins of green-light photoluminescence emission in structurally ordered and disordered powders of calcium molybdate

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 38, Pages 8920-8928

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp801587w

Keywords

-

Ask authors/readers for more resources

A strong greenish-light photoluminescence (PL) emission was measured at room temperature for disordered and ordered powders of CaMoO4 prepared by the polymeric precursor method. The structural evolution from disordered to ordered powders was accompanied by XRD. Raman spectroscopy, and TEM imagery. High-level quantum mechanical calculations in the density functional framework were used to interpret the formation of the structural defects of disorder powders in terms of band diagram and density of states. Complex cluster vacancies [MoO3 center dot V-O(z)] and [CaO7 center dot V-O(z)] (where V-O(z) = V-O(X), V-O(center dot), V-O(center dot center dot)) were suggested to be responsible to the appearance of new states shallow and deeply inserted in the band gap. These defects give rise to the PL in disordered powders. The natural PL emission of ordered CaMoO4 was attributed to an intrinsic slight distortion of the [MoO4] tetrahedral in the short range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available