4.6 Article

Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 7, Pages 1392-1402

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp074806y

Keywords

-

Ask authors/readers for more resources

Molecular dynamics simulations have been performed with two reactive force fields to investigate the structure of a Pt-100 cluster adsorbed on the three distinct sides of a carbon platelet. A revised Reax force field for the carbon-platinum system is presented. In the simulations, carbon platelet edges both with and without hydrogen termination have been studied. It is found that the initial mismatch between the atomic structure of the platelet egde and the adsorbed face of the Pt-100 cluster leads to a desorption of a few platinum atoms from the cluster and the subsequent restructuring of the cluster. Consequently, the average Pt-Pt bond length is enlarged in agreement with experimental results. This change in the bond length is supposed to play an important role in the enhancement of the catalytic activity, which is demonstrated by studying the changes in the bond order of the platinum atoms. We found an overall shift to lower values as well as a loss of the well-defined peak structure in the bond-order distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available