4.6 Review

Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 31, Pages 7128-7136

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp801429m

Keywords

-

Ask authors/readers for more resources

Thom's catastrophe theory applied to the evolution of the topology of the electron localization function (ELF) gradient field constitutes a way to rationalize the reorganization of electron pairing and a powerful tool for the unambiguous determination of the molecular mechanisms of a given chemical reaction. The identification of the turning points connecting the ELF structural stability domains along the reaction pathway allows a rigorous characterization of the sequence of electron pair rearrangements taking place during a chemical transformation, such as multiple bond forming/breaking processes, ring closure processes, creation/annihilation of lone pairs, transformations of C-C multiple bonds into single ones. The reaction mechanism of some relevant organic reactions: Diels-Alder, 1,3-dipolar cycloaddition and Cope rearrangement are reviewed to illustrate the potential of the present approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available