4.7 Article

Singularity avoidance in a quantum model of the Mixmaster universe

Journal

PHYSICAL REVIEW D
Volume 92, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.92.124018

Keywords

-

Funding

  1. MNiSW fellowship Mobilnosc Plus

Ask authors/readers for more resources

We present a quantum model of the vacuum Bianchi-IX dynamics. It is based on four main elements. First, we use a compound quantization procedure: an affine coherent state quantization for isotropic variables and a Weyl quantization for anisotropic ones. Second, inspired by standard approaches in molecular physics, we make an adiabatic approximation (Born-Oppenheimer-like approximation). Third, we expand the anisotropy potential about its minimum in order to deal with its harmonic approximation. Fourth, we develop an analytical treatment on the semiclassical level. The resolution of the classical singularity occurs due to a repulsive potential generated by the affine quantization. This procedure shows that during contraction the quantum energy of anisotropic degrees of freedom grows much slower than the classical one. Furthermore, far from the quantum bounce, the classical recollapse is reproduced. Our treatment is put in the general context of methods of molecular physics, which can include both adiabatic and nonadiabatic approximations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available