4.6 Article

Pd(II) phthalocyanine-sensitized triplet-triplet annihilation from rubrene

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 16, Pages 3550-3556

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp7111878

Keywords

-

Ask authors/readers for more resources

Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambda(ex) = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxyphthalocyanine, PdPc(OBu)(8), in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), H-1 NMR (in d(6)-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/ EP). Films that were prepared under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available