4.6 Article

Possible Oxidative Polymerization Mechanism of 5,6-Dihydroxyindole from A Initio Calculations

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 44, Pages 11213-11222

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp711025m

Keywords

-

Ask authors/readers for more resources

The reactivity of 5,6-dihydroxyindole and its major dimers has been studied with the use of a recently proposed general-purpose reactive indicator (Anderson et al. J. Chem. Theory Comput. 2007, 3, 358-374) from ab initio density-functional theory calculations. Theoretical prediction has reasonably explained previously isolated oligomers up to tetramers. The oxidative polymerization is governed by the electron-transfer-control led reaction. The electrostatic interaction plays a regioselective role in the reactant complex and/or intermediates. A monomer-dimer coupling is able to form trimers, while a part of it is prevented by the exchange repulsion, i.e., steric hindrance. Therefore, a dimer-dimer coupling is also able to form tetramers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available