4.6 Article

Influence of the central metal ion on nonlinear optical and two-photon absorption properties of push-pull transition metal porphyrins

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 13, Pages 2870-2879

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp7096179

Keywords

-

Funding

  1. Direct For Education and Human Resources
  2. Division Of Human Resource Development [833178] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a quantum-chemical analysis of the central metal ion's effect on first hyperpolarizabilities and two-photon absorption (TPA) cross sections at the infrared region of a series of push-pull porphyrins whose synthesis and NLO properties have been reported earlier (J. Am. Chem. Soc. 2005, 127, 9710). The molecular geometries are obtained via the B3LYP/6-31G(d,p) level optimization including SCRF/PCM approach, and the NLO and TPA properties are calculated with the ZINDO/CV method including solvent effects. It is found that the CT transition between the metal ion's d orbital and the macrocycle 7 orbitals plays an important role on NLO and TPA properties of metal porphyrins. Our data suggest a new approach to enhance TPA properties of porphyrin materials. We also present a quantum-chemical analysis on porphyrin dimers and trimers to understand the relationship between structural and collective NLO properties. It has been observed that beta values can be improved about an order of magnitude and TPA properties can be enhanced by 2 orders of magnitude by the formation of a trimer. The importance of our results with respect to the design of photonic and photodynamic therapy materials have been discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available