4.7 Article

Measurement of the Atmospheric νe Spectrum with IceCube

Journal

PHYSICAL REVIEW D
Volume 91, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.122004

Keywords

-

Funding

  1. U.S. National Science Foundation-Office of Polar Programs
  2. U.S. National Science Foundation-Physics Division
  3. University of Wisconsin Alumni Research Foundation
  4. Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison
  5. Open Science Grid (OSG) grid infrastructure
  6. U.S. Department of Energy
  7. National Energy Research Scientific Computing Center
  8. Louisiana Optical Network Initiative (LONI) grid computing resources
  9. Natural Sciences and Engineering Research Council of Canada
  10. WestGrid and Compute/Calcul Canada
  11. Swedish Research Council
  12. Swedish Polar Research Secretariat
  13. Swedish National Infrastructure for Computing (SNIC)
  14. Knut and Alice Wallenberg Foundation, Sweden
  15. German Ministry for Education and Research (BMBF)
  16. Deutsche Forschungsgemeinschaft (DFG)
  17. Helmholtz Alliance for Astroparticle Physics (HAP)
  18. Research Department of Plasmas with Complex Interactions (Bochum), Germany
  19. Fund for Scientific Research (FNRS-FWO)
  20. FWO Odysseus program
  21. Flanders Institute to encourage scientific and technological research in industry (IWT)
  22. Belgian Federal Science Policy Office (Belspo)
  23. University of Oxford, United Kingdom
  24. Marsden Fund, New Zealand
  25. Australian Research Council
  26. Japan Society for Promotion of Science (JSPS)
  27. Swiss National Science Foundation (SNSF), Switzerland
  28. National Research Foundation of Korea (NRF)
  29. Danish National Research Foundation, Denmark (DNRF)
  30. STFC [PP/C506205/1, ST/L000474/1, ST/J000507/1] Funding Source: UKRI
  31. Science and Technology Facilities Council [ST/J000507/1, ST/L000474/1, PP/C506205/1] Funding Source: researchfish
  32. Direct For Mathematical & Physical Scien
  33. Division Of Physics [1403586] Funding Source: National Science Foundation
  34. Direct For Mathematical & Physical Scien
  35. Division Of Physics [1205403] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available