4.6 Review

Evaluation of solute binding to proteins and intra-protein distances from steady state fluorescence measurements

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2011.11.002

Keywords

Fluorescence; Albumin; Binding; Resonance energy transfer

Funding

  1. Dicyt (USACH)
  2. FONDECYT [1070285, 1095036]
  3. Becas Chile
  4. University of Ottawa

Ask authors/readers for more resources

Steady state fluorescence measurements, due to their relative simplicity and fast and easy implementation, are one of the most employed techniques for evaluating the non-covalent binding of small molecules to proteins. In the present review we discuss the main characteristics of solute binding and the experimental procedures that can be employed for evaluating both, the efficiency of the process and the number of binding sites. It is also discussed the possibility of determining the distance between endogenous fluorophores and non-covalently bound solutes. Albumins (human serum albumin and bovine serum albumin) are considered as model proteins due to their relevance as solute carriers, the extensive available data comprising binding of a large number of solutes, and the reduced number of intrinsic fluorophores which simplifies the data treatment. It is shown that, in spite of the apparent simplicity of the systems, extreme care must be exercised in data treatment and interpretation to avoid misleading results. This applies to the evaluation of binding constants, number of binding sites, and average distance between intrinsic fluorophores and non-covalently bound solutes associated to the proteins. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available