4.6 Article

Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2012.08.008

Keywords

ZnO nano; Surface modification; Doxorubicin; Singlet oxygen; Photoinactivation

Funding

  1. University Grants Commission (UGC), New Delhi

Ask authors/readers for more resources

The aim of this study is to investigate a new strategy of combined application of ZnO/PEG nanospheres with anticancer drug of doxorubicin (DOX) in photodynamic therapy (PDT). We were able to fabricate ZnO/PEG nanospheres as the drug carrier of DOX in drug delivery system. The combination of DOX-ZnO/PEG nanocomposites induced the remarkable improvement in the anti-tumor activity, which has been demonstrated by antibacterial activity, drug release and DNA cleavage study. Furthermore, the possible mechanism was explored by optical spectroscopic studies and EPR - spin trapping technique. It was noted that the photodynamic activity of the non-cytotoxic DOX loaded ZnO/PEG nanocomposite could considerably increase cancer cell injury mediated by reactive oxygen species (ROS) under UV irradiation. In our observations demonstrated that ZnO/PEG nanosphere could obviously increase the intracellular concentration of DOX and enhance its potential anti-tumor efficiency, indicating that ZnO/PEG nanosphere could act as an efficient drug delivery carrier importing DOX into target cancer cells. Nearly 91% of loaded drug was released within 26 h of incubation of conjugates in vitro in an acidic environment. It suggests that there is an efficient drug release of DOX from DOX-ZnO/PEG nanocomposite. DOX loaded on ZnO/PEG nanomaterials showed antibacterial activity was more pronounced with Gram-positive than Gram-negative bacteria under visible light. DOX-ZnO/PEG nanocomposites were effective against HeLa cell lines under in vitro condition and photocleavage of DNA. This result indicated that ZnO/PEG nanomaterials can be used as a nanocarrier for drug delivery system for PDT. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available