4.6 Review

Photosystem II fluorescence: Slow changes - Scaling from the past

Journal

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY
Volume 104, Issue 1-2, Pages 258-270

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2011.03.008

Keywords

Chlorophyll; Fluorescence induction; Non-photochemical quenching; Photochemical quenching; State transitions; Regulation of excitation energy distribution

Ask authors/readers for more resources

With the advent of photoelectric devices (photocells, photomultipliers) in the 1930s, fluorometry of chlorophyll (Chl) a in vivo emerged as a major method in the science of photosynthesis. Early researchers employed fluorometry primarily for two tasks: to elucidate the role in photosynthesis, if any, of other plant pigments, such as Chl b, Chl c, carotenoids and phycobilins; and to use it as a convenient inverse measure of photosynthetic activity. In pursuing the latter task, it became apparent that Chl a fluorescence emission is influenced (i) by redox active Chl a molecules in the reaction center of photosystem (PS) 11 (photochemical quenching); (ii) by an electrochemical imbalance across the thylakoid membrane (high energy quenching); and (iii) by the size of the peripheral antennae of weakly fluorescent PSI and strongly fluorescent PSII in response to changes in the ambient light (state transitions). In this perspective we trace the historical evolution of our awareness of these concepts, particularly of the so-called 'State Transitions'. 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available