4.6 Article

Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2009.03.010

Keywords

Cucumis sativus; Gene transcription; Light-emitting diode (LED); Photochemical efficiency; Photosynthesis; Stomatal characteristics

Funding

  1. National Basic Research Program of China [2009CB119000]
  2. National Key Technology R&D Program of China [2008BADA61302]

Ask authors/readers for more resources

Light quality is thought to affect many plant physiological processes during growth and development, particularly photosynthesis. We examined how light quality influences plant photosynthesis by analyzing changes in photosynthetic parameters and expression levels of some photosynthesis related genes of cucumber (Cucumis sativus L cv. Jinyou No. 1) plants. The plants were grown under different light qualities: purple (P), blue (B), green (G), yellow (Y), red (R) and white light (W) of the same photosynthetic photon flux density (PFD) about 350 mu mol m(-2) s(-1) for 5 days. The results show that all plants grown under monochromatic light had reduced growth, CO2 assimilation rate (Pn) and quantum yield of PSII electron transport (Phi(PSII)) as compared with plants grown under W, and these reductions were more significant in the plants under G, Y and R. The decrease in Phi(PSII) is mostly due to the reduction in photochemical quenching (qP). Interestingly, P- and B-grown plants had higher stomatal conductance (Gs), total and initial Rubisco activities and higher transcriptional levels of 10 genes which encode key enzymes in the Calvin cycle together with higher total soluble sugars, sucrose and starch contents as compared with W-grown plants, whereas in G-, Y-, and R-grown plants these parameters declined. Therefore, the reduction in Pn under P and B is likely the result of inactivation of photosystems, whilst under Y, G and R it is caused by, in addition to photosystem inactivation, the closure of stomata and the transcriptional down-regulation of genes for the Calvin cycle enzymes such as rbc L and rca. In conclusion, light quality alters plant photosynthesis by the effects on the activity of photosynthetic apparatus in leaves and the effects on the expression and/or activity of the Calvin cycle enzymes. (c) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available