4.7 Review

Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 99, Issue 23, Pages 9883-9905

Publisher

SPRINGER
DOI: 10.1007/s00253-015-6964-8

Keywords

EPS; Granulation; Flocculation; Mechanism; Protein; Polysaccharide

Funding

  1. EU grant agreement FPA [2010-0009]

Ask authors/readers for more resources

This paper reviews the formation, structure, and stability of bioaggregates with an emphasis on the composition and distribution of extracellular polymeric substances (EPS) and their role in bioaggregation. Bioaggregation is ubiquitous in natural environment and is of great importance in biological wastewater treatment processes. It greatly influences the flocculability, settleability, and dewaterability for flocs and sludge retention and shear resistance for biofilms. The physico-chemical and microbial structures of bioaggregates are dependent on operational conditions as well as microbial diversity and spatial distribution. The formation of bioaggregates is mediated by the physico-chemical interactions as well as the microbial interactions such as EPS production and quorum sensing. EPS are composed of a mixture of macromolecules including proteins, polysaccharides, humic-like substances, and nucleic acids, which entrap the microbial cells in a three-dimensional matrix. The composition and physico-chemical characteristics of EPS have significant influence on the maintenance of the bioaggregate structure and the process performance of the wastewater treatment. However, the mechanisms of bioaggregation are still unclear and the conclusions on the role of EPS were mostly drawn from the established correlations and hypotheses. This paper expects to provide up-to-date knowledge on bioaggregation and insights for further studies and applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available