4.6 Article

TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2010.01.004

Keywords

Chlorophyll; Dye-sensitized solar cell; Zinc oxide nanomaterials; DFT calculations

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [20760606, 21750154]
  2. Japan Society for the Promotion of Science (JSPS) [19350088]
  3. Grants-in-Aid for Scientific Research [20760606, 21750154] Funding Source: KAKEN

Ask authors/readers for more resources

TiO2- and ZnO-based solar cells sensitized by a chlorophyll a derivative (methyl trans-3(2)-carboxypyropheophorbide a) were fabricated and compared. The TiO2-based solar cell produces higher values for the short-circuit photocurrent (J(sc)), open-circuit photovoltage (V-oc), and energy-to-electricity conversion efficiency (eta) than the ZnO-based solar cell. The observed ATR-FTIR data on the dye-sensitized semiconductor electrodes and the spectra estimated from the density functional theory (DFT) suggest that the dye sensitizer is bound to TiO2 with both the bidentate chelating and monodentate modes but is bound to ZnO with the monodentate mode exclusively. The frontier orbitals of the dye molecule bound to semiconductors suggest that the HOMO-2 and LUMO + 2 orbitals of the dye sensitizer do not participate in electron transfer processes for the dye-ZnO system, resulting in a lower J(sc) value and a relatively narrow response for the incident photon-to-current conversion efficiency in the solar cell. Transition component analysis based upon the time-dependent DFT results explains well the experimental UV-vis spectra and difference in the eta values between the dye-sensitized solar cells based upon TiO2 and ZnO nanocrystalline electrode materials. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available