4.6 Article

Organic chromophore-sensitized ZnO solar cells: Electrolyte-dependent dye desorption and band-edge shifts

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2008.11.024

Keywords

Photoelectrochemical solar cell; Gratzel cell; Mesoporous electrode

Funding

  1. International Science Program at Uppsala University
  2. Swedish Energy Agency
  3. Knut and Alice Wallenberg Foundation

Ask authors/readers for more resources

An organic chromophore D5 (3-(5-(4-(diphenylamino)styryl)thiophene-2-yl)-2-cyanoacrylic acid) was tested as a sensitizer in photoelectrochemical mesoporous ZnO solar cells. Using thin (similar to 3 mu m) mesoporous ZnO electrodes, high incident photon-to-current conversion efficiencies of up to 70% were obtained, while power conversion efficiencies up to 2.4% were found in simulated sunlight (100 mWcm(-2)). Long dye adsorption times (16h) could be used without aggregation or precipitation of the dye. The composition of the iodide/triiodide-based electrolyte was found to be crucial in optimization of the ZnO-based dye-sensitized solar cell. A high concentration of Li+ ions was found to be shift the ZnO conduction band edge to more negative potential, whereas opposite behavior is found for mesoporous TiO2 cells. It was also found to be detrimental for solar cell performance and stability. Electrolyte-dependent and photoinduced dye desorption from the ZnO electrode was identified as a major stability problem in D5-sensitized ZnO solar cells. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available