4.4 Article

Differential disposition of intra-renal generated and preformed glucuronides: studies with 4-methylumbelliferone and 4-methylumbelliferyl glucuronide in the filtering and nonfiltering isolated perfused rat kidney

Journal

JOURNAL OF PHARMACY AND PHARMACOLOGY
Volume 63, Issue 4, Pages 507-514

Publisher

WILEY
DOI: 10.1111/j.2042-7158.2010.01244.x

Keywords

glucuronidation; isolated perfused rat kidney; 4-methylumbelliferone; pharmacokinetics; preformed glucuronide

Funding

  1. National Health & Medical Research Council of Australia

Ask authors/readers for more resources

Objectives This study was designed to investigate the renal disposition of 4-methylumbelliferone (4MU) and 4-methylumbelliferyl glucuronide (4MUG) to characterise the contribution of excretion and metabolic clearance to total clearance in the kidney. Methods The isolated perfused kidney (IPK) from the male Sprague-Dawley rat was used in filtering and non-filtering mode to study the renal disposition of 4MU, renally generated 4MUG and preformed 4MUG. Perfusate and urine (filtering IPK only) was collected for up to 120 min and 4MU and 4MUG in perfusate and urine were determined by HPLC. Analytes were also measured in kidney tissue collected at 120 min. Non-compartmental analysis was used to derive pharmacokinetic parameters. Key findings The concentration of 4MU in perfusate declined with a terminal half-life of approximately 120 min following administration to the filtering IPK and nonfiltering IPK. There was a corresponding increase in the concentration of 4MUG. Metabolic clearance of 4MU accounted for 92% of total renal clearance. After bolus dosing of preformed 4MUG in the perfusion reservoir of the filtering IPK, the perfusate concentration declined with the terminal half-life of approximately 260 min. The renal excretory clearance of preformed 4MUG accounted for 96% of total renal clearance. 4MU was extensively metabolized by glucuronidation in the filtering and nonfiltering IPK, and the total renal clearance of 4MU was far greater than its renal excretory clearance. This indicated that glucuronidation was the major elimination pathway for 4MU in the kidney. Conclusions The data confirmed an important role for the kidney in the metabolic clearance of xenobiotics via glucuronidation and signalled the lack of impact of impaired glomerular filtration on renal drug metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available