4.5 Article

Abuse Liability Profile of Three Substituted Tryptamines

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.111.179705

Keywords

-

Funding

  1. National Institutes of Health National Institute on Drug Abuse [N01-DA2-8822, Y1-DA5007]
  2. VA Merit and Career Scientist awards

Ask authors/readers for more resources

The abuse liability profile of three synthetic hallucinogens, N,N-diisopropyltryptamine (DIPT), 5-N,N-diethyl-5-methoxytryptamine (5-MeO-DET), and 5-methoxy-alpha-methyltryptamine (5-MeO-AMT), was tested in rats trained to discriminate hallucinogenic and psychostimulant compounds, including cocaine, methamphetamine, 3,4-methylenedioxymethylamphetamine (MDMA), lysergic acid diethylamide (LSD), (-)-2,5-dimethoxy-4-methylamphetamine (DOM), and dimethyltryptamine (DMT). Because abused hallucinogens act at 5-hydroxytryptamine 1A (5-HT(1A)) and 5-HT(2A) receptors, and abused psychostimulants act at monoamine transporters, binding and functional activities of DIPT, 5-MeO-DET, and 5-MeO-AMT at these sites were also tested. DIPT fully substituted in rats trained to discriminate DMT (ED(50) = 1.71 mg/kg) and DOM (ED(50) = 1.94 mg/kg), but produced only 68% LSD-appropriate responding. 5-MeO-DET fully substituted for DMT (ED(50) = 0.41 mg/kg) and produced 59% MDMA-appropriate responding. 5-MeO-AMT did not fully substitute for any of the training drugs, but produced 67% LSD-appropriate responding. None of the compounds produced substitution in rats trained to discriminate cocaine or methamphetamine. All three compounds showed activity at 5-HT(1A) and 5-HT(2A) receptors as well as blockade of reuptake by the serotonin transporter. In addition, 5-MeO-AMT produced low levels of serotonin release and low potency blockade of dopamine uptake. DIPT, 5-MeO-DET, and 5-MeO-AMT produced behavioral and receptor effects similar to those of abused hallucinogens, but were not similar to those of psychostimulants. DIPT and 5-MeO-DET may have abuse liability similar to known hallucinogens and may be hazardous because high doses produced activity and lethality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available