4.5 Article

NADPH Oxidase Pathway Is Involved in Aortic Contraction Induced by A3 Adenosine Receptor in Mice

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.111.180828

Keywords

-

Funding

  1. National Institutes of Health National Heart, Lung, and Blood Institute [HL027339, HL094447, HL071802]

Ask authors/readers for more resources

The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox), and 4 are the major sources for reactive oxygen species (ROS) in vascular tissues. In conditions such as ischemia-reperfusion and hypoxia, both ROS and adenosine are released, suggesting a possible interaction. Our aim in this study was to examine the A(3) adenosine receptor (A(3)AR)-induced vascular effects and its relation to ROS and Nox1, 2, and 4 using aortic tissues from wild-type (WT) and A(3)AR knockout (A(3)KO) mice. The selective A(3)AR agonist 2-chloro-N-6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IBMECA) (10(-10)-10(-5) M) induced contraction of the aorta from WT but not from A(3)KO mice, and this contraction was inhibited by the Nox inhibitor apocynin (10(-5) M) and the ROS scavengers superoxide dismutase-polyethylene glycol and catalase-polyethylene glycol (100 U/ml each). Cl-IBMECA-induced contraction was not affected by the mast cell degranulator compound 48/80 (100 mu g/ml) or the stabilizer cromolyn sodium (10(-4) M). In addition, Cl-IBMECA (10(-7) M) increased intracellular ROS generation by 35 +/- 14% in WT but not in A(3)KO aorta, and this increase was inhibited by apocynin (10(-5) M), diphenyleneiodonium chloride (10(-5) M), and the A(3)AR antagonist 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate (MRS1523) (10(-5) M). Furthermore, Cl-IBMECA selectively increased the protein expression of the Nox2 subunit by 150 +/- 15% in WT but not in A(3)KO mice without affecting either Nox1 or 4, and this increase was inhibited by apocynin. The mRNA of Nox2 was unchanged by Cl-IBMECA in either WT or A(3)KO aortas. In conclusion, A(3)AR enhances ROS generation, possibly through activation of Nox2, with subsequent contraction of the mouse aorta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available