4.5 Article

Putative Transmembrane Domain 12 of the Human Organic Anion Transporter hOAT1 Determines Transporter Stability and Maturation Efficiency

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.109.160515

Keywords

-

Funding

  1. National Institutes of Health National Institute of Diabetes Digestive and Kidney Diseases [R01-DK061652]
  2. National Institutes of Health National Institute of General Medical Sciences [R01-GM079123]

Ask authors/readers for more resources

Human organic anion transporter hOAT1 plays a critical role in the body disposition of clinically important drugs. In transmembrane segment (TM) 12, residues Tyr-490 and dileucine Leu503/Leu-504 were identified to be critical for hOAT1 function. Substitution of Tyr-490 with alanine led to a dramatic reduction in protein expression of hOAT1 and its transport activity. The contribution of the side chain of Tyr-490 to transport activity was then evaluated by replacing this residue with Trp or Phe. Substitution of Tyr-490 with Trp or Phe partially or fully recovered the protein expression of hOAT1 and its transport activity, respectively, that were lost by substitution of Tyr-490 with alanine, suggesting that the aromatic ring and the size of the side chain of Tyr-490 are critical for hOAT1 expression and function. Studies with protease inhibitors and pulse-chase la-beling further showed that the loss of expression of hOAT1 and its transport activity by replacing Tyr-490 with alanine resulted from accelerated degradation of the transporter, whereas its maturation efficiency was not affected. In contrast to Tyr-490, substitution of Leu-503/Leu-504 with alanine also resulted in complete loss of protein expression of hOAT1 and its transport activity. However, such loss of protein expression could not be prevented by treating mutant-expressing cells with protease inhibitors. Pulse-chase experiments showed that the mutant transporter (L503/L504A) was trapped in the endoplasmic reticulum without conversion into mature form of the transporter. Our results are the first to highlight the central role of TM 12 in maintaining the stability and in promoting the maturation efficiency of hOAT1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available