4.5 Article

Your prodrug releases formaldehyde: Should you be concerned? No!

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 97, Issue 10, Pages 4184-4193

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/jps.21319

Keywords

prodrugs; formaldehyde release; apparent toxicity; in vivo metabolism

Ask authors/readers for more resources

The title of this commentary contains a frequently asked question whenever someone presents or proposes a prodrug strategy that releases formaldehyde as a result of bioconversion of a prodrug to parent drug. Formaldehyde, a highly water-soluble one-carbon molecule, is endogenous to cells, tissues, and body fluids. Although formaldehyde is generated and incorporated into essential metabolic processes by the human body, exposure to large amounts of formaldehyde vapor can irritate the nasal mucosa and may potentially be carcinogenic. It also gives a positive Ames test. Metabolism of both endogenous and exogenous formaldehyde involves rapid oxidation to formic acid catalyzed by glutathione dependent and independent dehydrogenases in the liver and erythrocytes. Balancing this rapid detoxification pathway is endogenous formation from normal metabolic processes and exogenous formaldehyde input, resulting in approximately 0.1 mM systemic levels. The possibility that formaldehyde released upon bioconversion of prodrugs might induce toxicity has been repeatedly stated, but no convincing evidence for this perceived toxicity has been documented in experimental studies. Therefore, as pharmaceutical chemists and not as toxicologists, we present our perspective on the apparent concern with release of formaldehyde as a by-product of in vivo bioconversion of selective prodrugs, and suggest that in comparison to the total amount of daily endogenous formaldehyde production from metabolism, and exogenous exposure from food and the environment, the amount generated by prodrugs is minute and is unlikely to cause any systemic toxicity in humans. Such an argument does not preclude formaldehyde-based toxicity assessment of a prodrug. Instead, it reduces the risk that in vivo liberation of formaldehyde will cause undue toxicity. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available