4.2 Article

Suppressive immune response of poly-(sarcosine) chains in peptide-nanosheets in contrast to polymeric micelles

Journal

JOURNAL OF PEPTIDE SCIENCE
Volume 20, Issue 7, Pages 570-577

Publisher

WILEY-BLACKWELL
DOI: 10.1002/psc.2655

Keywords

nanoparticles; immune response; T-independent antigen; polymeric micelle; nanosheet

Ask authors/readers for more resources

Nanoparticles are expected to be applicable for the theranostics as a carrier of the diagnostic and therapeutic agents. Lactosome is a polymeric micelle composed of amphiphilic polydepsipeptide, poly(sarcosine)64-block-poly(l-lactic acid)30, which was found to accumulate in solid tumors through the enhanced permeability and retention effect. However, lactosome was captured by liver on the second administration to a mouse. This phenomenon is called as the accelerated blood clearance phenomenon. On the other hand, peptide-nanosheet composed of amphiphilic polypeptide, poly(sarcosine)60-block-(l-Leu-Aib)6, where the poly(l-lactic acid) block in lactosome was replaced with the (l-Leu-Aib)6 block, abolished the accelerated blood clearance phenomenon. The ELISA and in vivo near-infrared fluorescence imaging revealed that peptide-nanosheets did not activate the immune system despite the same hydrophilic block being used. The high surface density of poly(sarcosine) chains on the peptide-nanosheet may be one of the causes of the suppressive immune response. Copyright (c) 2014 European Peptide Society and John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available