4.6 Article

Electronic and transport properties of phosphorene nanoribbons

Journal

PHYSICAL REVIEW B
Volume 92, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.035436

Keywords

-

Ask authors/readers for more resources

By combining density functional theory and nonequilibrium Green's function, we study the electronic and transport properties of monolayer black phosphorus nanoribbons (PNRs). First, we investigate the band gap of PNRs and its modulation by the ribbon width and an external transverse electric field. Our calculations indicate a giant Stark effect in PNRs, which can switch on transport channels of semiconducting PNRs under low bias, inducing an insulator-metal transition. Next, we study the transport channels in PNRs via the calculations of the current density and local electron transmission pathway. In contrast to graphene and MoS2 nanoribbons, the carrier transport channels under low bias are mainly located in the interior of both armchair and zigzag PNRs, and immune to a small amount of edge defects. Last, a device of the PNR-based dual-gate field-effect transistor, with high on/off ratio of 10(3), is proposed based on the giant electric-field tuning effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available