4.6 Article

Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP

Journal

PHYSICAL REVIEW B
Volume 92, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.115428

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft DFG [EB 518/1-1, DFG-SPP 1666, SFB 1143]
  2. ERC [291472]

Ask authors/readers for more resources

Very recently the topological Weyl semimetal (WSM) state was predicted in the noncentrosymmetric compounds NbP, NbAs, TaP, and TaAs and soon led to photoemission and transport experiments to verify the presumed topological properties such as Fermi arcs (unclosed Fermi surfaces) and the chiral anomaly. In this work we have performed fully ab initio calculations of the surface band structures of these four WSM materials and revealed the Fermi arcs with spin-momentum-locked spin texture. On the (001) polar surface, the shape of the Fermi surface depends sensitively on the surface terminations (cations or anions), although they exhibit the same topology with arcs. The anion (P or As) terminated surfaces are found to fit recent photoemission measurements well. Such surface potential dependence indicates that the shape of the Fermi surface can be sensitively manipulated by depositing guest species (such as K atoms), as we demonstrate. On the polar surface of a WSM without inversion symmetry, Rashba-type spin polarization naturally exists in the surface states and leads to strong spin texture. By tracing the spin polarization of the Fermi surface, one can distinguish Fermi arcs from trivial Fermi circles. The four compounds NbP, NbAs, TaP, and TaAs present an increasing amplitude of spin-orbit coupling (SOC) in band structures. By comparing their surface states, we reveal the evolution of topological Fermi arcs from the spin-degenerate Fermi circle to spin-split arcs when the SOC increases from zero to a finite value. Our work presents a comprehensive understanding of the topological surface states of WSMs, which will especially be helpful for future spin-revolved photoemission and transport experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available