4.6 Article

Locally resonant band gaps in periodic beam lattices by tuning connectivity

Journal

PHYSICAL REVIEW B
Volume 91, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.020103

Keywords

-

Funding

  1. Harvard MRSEC [DMR-1420570]
  2. NSF [CMMI-1120724, CMMI-1149456]
  3. Harvard School of Engineering and Applied Sciences
  4. Kavli Institute and Wyss Institute at Harvard University
  5. Div Of Civil, Mechanical, & Manufact Inn
  6. Directorate For Engineering [1120724] Funding Source: National Science Foundation

Ask authors/readers for more resources

Lattice structures have long fascinated physicists and engineers not only because of their outstanding functionalities, but also for their ability to control the propagation of elastic waves. While the study of the relation between the connectivity of these systems and their static properties has a long history that goes back to Maxwell, rules that connect the dynamic response to the network topology have not been established. Here, we demonstrate that by tuning the average connectivity of a beam network ((z) over bar), locally resonant band gaps can be generated in the structures without embedding additional resonating units. In particular, a critical threshold for (z) over bar is identified, far from which the band gap size is purely dictated by the global lattice topology. By contrast, near this critical value, the detailed local geometry of the lattice also has strong effects. Moreover, in stark contrast to the static case, we find that the nature of the joints is irrelevant to the dynamic response of the lattices. Our results not only shed new light on the rich dynamic properties of periodic lattices, but also outline a new strategy to manipulate mechanical waves in elastic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available