4.6 Article

Weak antilocalization and localization in disordered and interacting Weyl semimetals

Journal

PHYSICAL REVIEW B
Volume 92, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.035203

Keywords

-

Funding

  1. Research Grants Council, University Grants Committee, Hong Kong [17303714]

Ask authors/readers for more resources

Using the Feynman diagram techniques, we derive the finite-temperature conductivity and magnetoconductivity formulas from the quantum interference and electron-electron interaction, for a three-dimensional disordered Weyl semimetal. For a single valley of Weyl fermions, we find that the magnetoconductivity is negative and proportional to the square root of magnetic field at low temperatures, as a result of the weak antilocalization. By including the contributions from the weak antilocalization, Berry curvature correction, and Lorentz force, we compare the calculated magnetoconductivity with a recent experiment. The weak antilocalization always dominates the magnetoconductivity near zero field, thus gives one of the transport signatures for Weyl semimetals. In the presence of strong intervalley scattering and correlations, we expect a crossover from the weak antilocalization to weak localization. In addition, we find that the interplay of electron-electron interaction and disorder scattering always dominates the conductivity at low temperatures and leads to a tendency to localization. Finally, we present a systematic comparison of the transport properties of single-valley Weyl fermions, 2D massless Dirac fermions, and 3D conventional electrons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available