4.7 Article

Molecular and genetic diversity in the metastatic process of melanoma

Journal

JOURNAL OF PATHOLOGY
Volume 233, Issue 1, Pages 39-50

Publisher

WILEY-BLACKWELL
DOI: 10.1002/path.4318

Keywords

BRAF; melanoma; deep sequencing; gene expression; NRAS

Funding

  1. Swedish Cancer Society
  2. Swedish Research Council
  3. BioCARE
  4. Berta Kamprad Foundation
  5. Gunnar Nilsson Cancer Foundation
  6. Gustav Vth Jubilee Foundation
  7. Governmental Support for Medical Research (ALF)

Ask authors/readers for more resources

Diversity between metastatic melanoma tumours in individual patients is known; however, the molecular and genetic differences remain unclear. To examine the molecular and genetic differences between metastatic tumours, we performed gene-expression profiling of 63 melanoma tumours obtained from 28 patients (two or three tumours/patient), followed by analysis of their mutational landscape, using targeted deep sequencing of 1697 cancer genes and DNA copy number analysis. Gene-expression signatures revealed discordant phenotypes between tumour lesions within a patient in 50% of the cases. In 18 of 22 patients (where matched normal tissue was available), we found that the multiple lesions within a patient were genetically divergent, with one or more melanoma tumours harbouring 'private' somatic mutations. In one case, the distant subcutaneous metastasis of one patient occurring 3 months after an earlier regional lymph node metastasis had acquired 37 new coding sequence mutations, including mutations in PTEN and CDH1. However, BRAF and NRAS mutations, when present in the first metastasis, were always preserved in subsequent metastases. The patterns of nucleotide substitutions found in this study indicate an influence of UV radiation but possibly also DNA alkylating agents. Our results clearly demonstrate that metastatic melanoma is a molecularly highly heterogeneous disease that continues to progress throughout its clinical course. The private aberrations observed on a background of shared aberrations within a patient provide evidence of continued evolution of individual tumours following divergence from a common parental clone, and might have implications for personalized medicine strategies in melanoma treatment. Published by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available