4.7 Article

Triggering receptor expressed on myeloid cells-1 (TREM-1) improves host defence in pneumococcal pneumonia

Journal

JOURNAL OF PATHOLOGY
Volume 233, Issue 4, Pages 357-367

Publisher

WILEY
DOI: 10.1002/path.4361

Keywords

TREM-1; pneumococcal pneumonia; innate immunity; macrophages; phagocytosis

Funding

  1. AMC Graduate School, University of Amsterdam, The Netherlands

Ask authors/readers for more resources

Streptococcus (S.) pneumoniae is a common Gram-positive pathogen in community-acquired pneumonia and sepsis. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor on phagocytes known to amplify inflammatory responses. Previous studies showed that TREM-1 inhibition protects against lethality during experimental Gram-negative sepsis. We here aimed to investigate the role of TREM-1 in an experimental model of pneumococcal pneumonia, using TREM-1/3-deficient (Trem-1/3(-/-)) and wild-type (Wt) mice. Additionally ex vivo responsiveness of Trem-1/3(-/-) neutrophils and macrophages was examined. S. pneumoniae infection resulted in a rapid recruitment of TREM-1-positive neutrophils into the bronchoalveolar space, while high constitutive TREM-1 expression on alveolar macrophages remained unchanged. TREM-1/3 deficiency led to increased lethality, accompanied by enhanced growth of S. pneumoniae at the primary site of infection and increased dissemination to distant organs. Within the first 3-6 h of infection, Trem-1/3(-/-) mice demonstrated a strongly impaired innate immune response in the airways, as reflected by reduced local release of cytokines and chemokines and a delayed influx of neutrophils. Trem-1/3(-/-) alveolar macrophages produced fewer cytokines upon exposure to S. pneumoniae in vitro and were less capable of phagocytosing this pathogen. TREM-1/3 deficiency did not influence neutrophil responsiveness to S. pneumoniae. These results identify TREM-1 as a key player in protective innate immunity during pneumococcal pneumonia, most likely by enhancing the early immune response of alveolar macrophages. Copyright (C) 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available