4.6 Article

Mott physics and spin fluctuations: A unified framework

Journal

PHYSICAL REVIEW B
Volume 92, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.115109

Keywords

-

Funding

  1. FP7/ERC [278472-MottMetals]
  2. GENCI-TGCC [2015-t2015056112]

Ask authors/readers for more resources

We present a formalism for strongly correlated electron systems which consists in a local approximation of the dynamical three-leg interaction vertex. This vertex is self-consistently computed using a quantum impurity model with dynamical interactions in the charge and spin channels, similar to dynamical mean field theory approaches. The electronic self-energy and the polarization are both frequency and momentum dependent. The method interpolates between the spin-fluctuation or GW approximations at weak coupling and the atomic limit at strong coupling. We apply the formalism to the Hubbard model on a two-dimensional square lattice and show that as interactions are increased towards the Mott insulating state, the local vertex acquires a strong frequency dependence, driving the system to a Mott transition, while at low enough temperatures the momentum dependence of the self-energy is enhanced due to large spin fluctuations. Upon doping, we find a Fermi arc in the one-particle spectral function, which is one signature of the pseudogap state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available