4.6 Article

Cluster-based mean-field and perturbative description of strongly correlated fermion systems: Application to the one- and two-dimensional Hubbard model

Journal

PHYSICAL REVIEW B
Volume 92, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.085101

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-09ER16053]
  2. Welch Foundation Chair [C-0036]

Ask authors/readers for more resources

We introduce a mean-field and a perturbative approach, based on clusters, to describe the ground state of fermionic strongly correlated systems. In the cluster mean-field approach, the ground-state wave function is written as a simple tensor product over optimized cluster states. The optimization of the single-particle basis where the cluster mean field is expressed is crucial in order to obtain high-quality results. The mean-field nature of the Ansatz allows us to formulate a perturbative approach to account for intercluster correlations; other traditional many-body strategies can be easily devised in terms of the cluster states. We present benchmark calculations on the half-filled 1D and (square) 2D Hubbard model, as well as the lightly doped regime in 2D, using cluster mean-field and second-order perturbation theory. Our results indicate that, with sufficiently large clusters or to second-order in perturbation theory, a cluster-based approach can provide an accurate description of the Hubbard model in the considered regimes. Several avenues to improve upon the results presented in this work are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available